
63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 1 of 7

IAC-12- B2.2.5

SCAN TESTBED SOFTWARE DEVELOPMENT AND LESSONS LEARNED

Thomas J. Kacpura1
NASA Glenn Research Center, U.S.A, Thomas.J.Kacpura@nasa.gov

Denise M. Varga2

NASA Glenn Research Center, U.S.A., Denise.M.Varga@nasa.gov

NASA has developed an experimental flight payload, the Space Communication and Navigation (SCaN) Testbed,

to investigate software defined radio (SDR) communications, networking, and navigation technologies, and is
operational in the space environment. The payload consists of three software defined radios each compliant to
NASA’s Space Telecommunications Radio System Architecture, a common architecture standard for space software
defined radios. These software defined radios are new technology developments for NASA and industry partners.
Launched in July 2012, the payload is externally mounted to the International Space Station truss for conducting
experiments representative of future mission capability. Experiment operations will include in-flight reconfiguration
of the SDR waveform functions and payload networking software. The flight system will communicate with
NASA’s orbiting satellite relay network, the Tracking and Data Relay Satellite System (TDRSS) at both S-band and
Ka-band and direct to the ground to any Earth-based compatible S-band ground station. The system will be available
for experiments by industry, academia, and other government agencies to participate in the technology assessments
and standards advancements. This paper focuses on software lessons learned through development, integration and
testing as related to the avionics processor system, and the software required to command, control, monitor, and
interact with the SDRs, as well as the other communication payload elements.

I. INTRODUCTION

HE National Aeronautics and Space Administration
(NASA) Space Communications and Navigation

(SCaN) Testbed Project is studying the development,
testing, and operation of software defined radios (SDRs)
and their associated applications for future use by
NASA missions. To that end, the NASA Glenn
Research Center (GRC) has assembled and launched a
flight testbed which consists of reconfigurable and
reprogrammable SDRs operating at L-band, S-band, and
Ka-band, along with the required radio frequency
(RF)/antenna systems necessary for communications.
The three SDRs were built by Jet Propulsion Laboratory
(JPL)/Cincinnati Electronics, General Dynamics
Advanced Information Systems, and the Harris
Corporation. The JPL SDR can receive Global
Positioning Satellite (GPS) signals while simultaneously
operating as an S-band transceiver, and is a heritage
design based on the Electra software defined radio. The
General Dynamics SDR is capable of full-duplex S-
band communications, and leverages GD’s experience
with the 4th generation Tracking Data and Relay
Satellite System (TDRSS) transponder. Harris
Corporation provided a full-duplex Ka-band SDR,
which is the first NASA Ka-band SDR. All three SDRs
are compatible with TDRSS.

The end use of the on-orbit, adaptable, Software
Defined Radio (SDR)/Space Telecommunications Radio
System (STRS)-based testbed facility is to conduct a
suite of experiments on the International Space Station

(ISS) to advance technologies, reduce risk, and enable
future mission capabilities. The SCAN Testbed will
provide NASA, industry, other Government agencies,
and academic partners the opportunity to develop and
field communications, navigation, and networking
technologies in the laboratory and space environment
based on reconfigurable SDR platforms and the STRS
Architecture. An example of this might be a lunar rover
communicating with a home base on the moon, and the
home base relaying communications back to earth.

The SDRs are a new technology for NASA, and the
support infrastructure they require is different from
legacy, fixed function radios. SDRs offer the ability to
reconfigure on-orbit communications by changing
software for new waveforms and operating systems to
enable new capabilities or fix any anomalies, which was
not a previous option. Examples are implementing a
new coding scheme or a new modulation technique, or
simply changing the data rate. These SDRs are not
stand alone devices, but required an external source of
command and control and data handling. This requires
extensive software to be developed to utilize the full
potential of these reconfigurable platforms.

This paper focuses on development, integration and
testing as related to the avionics processor system, and
the software required to command, control, monitor, and
interact with the SDRs, as well as the other
communication payload elements. An extensive effort
was required to develop the flight software and meet the
NASA requirements for software quality and safety.

T

63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 2 of 7

The flight avionics is radiation tolerant, and these
processors have limited processing capability in
comparison to terrestrial counterparts. A big challenge
was interfacing the avionics with multiple SDRs
simultaneously, which complicates the effort. The
effort also includes ground software, which is a key
element for both the command of the payload, and
displaying and archiving the telemetry and data created
by the payload.

The verification of the software was a time
consuming effort. The challenges of specifying a
suitable test matrix with reconfigurable systems that
offer numerous operating configurations is highlighted.
Since the flight system testing requires methodical,
controlled testing that limits risk, a nearly identical
ground system to the on-orbit flight system was required
to develop the software and write verification
procedures before it was installed and tested on the
flight system. This effort is the basis of a new testing
paradigm that goes beyond the current “test as you fly,
fly as you test” approach.

The development of the SCAN Testbed was an
accelerated effort to meet launch constraints, and this
paper discusses tradeoffs made to balance needed
software functionality and still maintain the schedule.
Future upgrades are discussed that optimize the avionics
and allow experimenters to utilize the SCAN Testbed
potential.

II. GENERAL LESSONS LEARNED

This section covers some of the general lessons
learned in developing the software for this project.
Many of the lessons learned were driven by developing
software for a flexible testbed with reconfigurable
radios for which existing design approaches are no
longer suitable.

II.I Balance the “ilities” (flexibility, upgradeability, etc.)
Offered by SDRs with Resources and Schedule

The existing approach for procuring radios is to
choose ones that meet the existing requirements exactly.
SDRs are designed to meet more than the existing
launch requirements; they need to be sized with
additional resources so that new capabilities can be
added. One challenge is that spacecraft often have fixed
resources, so additional capabilities need to be carefully
sized.

II.II Choose Your Test Matrix Carefully

Mission critical systems such as radio systems
require that they are carefully tested to ensure that they
will perform as designed under all possible conditions.
This is in opposition to the fact that the schedule for
developing and testing spacecraft systems is usually
very constrained, driven by launch date requirements.
When introducing reconfigurable systems, they require

testing a larger number of operating conditions than
fixed legacy systems. This requires a careful analysis to
select the key operating conditions to verify, focusing
on understanding the nominal and range of conditions in
which the radio is expected to operate. With Software
Defined Radios, there can be an infinite number of test
cases and properly bounding your test conditions is key
to verification prior to operations.

II.III Good SDR Documentation Set Required

Good documentation is key to acquiring an in-depth
understanding of the SDRs and their operation. Each of
the agreements with the vendors required a set of
documentation to be delivered at various portions of
their development cycle. The documentation needs to
describe the hardware and software in detail, as well as
the operation of the radio. Any commercial software
systems need to have documentation provided. The
interfaces that the spacecraft will connect to the radio
needs to be well-documented, and having this
information early in the development cycle allows
parallel development of the avionics with its data
systems and the radios. Vendor test data is also useful
to understanding the performance and operation of the
SDR, along with operating logs and anomaly resolution
data.

II.IV High Fidelity Software Development Systems Are
Necessary

The project requested breadboard, engineering
model and flight models of each radio. Since each radio
had a fair amount of development, the goal was to have
a breadboard first, the engineering model next, and the
flight system as the final deliverable. The breadboard
systems were early development systems to allow
interfacing with the avionics, with a focus on the
processor and waveform signal processing memory.
The engineering model was to be nearly identical to the
fight system, to be used in the ground integration unit
for flight system software development and hardware
checkout. The use of these interim SDR deliveries
would enable the integration and test of the flight unit
radios to be proven before installation into the flight
payload.

The challenge was that the actual deliveries did not
occur quite that way. The breadboard systems were
early development systems, but in the effort to allow an
early vendor delivery, they lacked the fidelity of the
engineering and flight units, most importantly the RF
functionality. Having the ability to upgrade these units
would have been useful post-launch for future
waveform development. Also, the engineering units
and flight units were delivered very close together,
leaving little to no time to incorporate findings from
testing with the engineering models into the flight
radios. New developments often run into issues;

63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 3 of 7

schedule risks that were realized resulted in close
deliveries of the SDRs leaving little or no opportunity to
incorporate changes from engineering model testing into
the flight models.

II.II Engineering and flight units must be identical.

The engineering units used similar components to
the flight units for the most part, but they were not
identical. The trade was cost and schedule, since the
flight units used radiation hardened or tolerant
components with long lead times. However, using
identical components is crucial in the engineering
systems, so that software with critical timing margins
and performance can be verified on the ground before
being deployed on the flight unit. For example, the
firmware executed on Xilinx Virtex IV FPGAs has
different performance due to timing differences between
the space grade and commercial grade components.
These timing differences are critical when developing
high data rate waveforms that have timing margin
constraints, and the ground testing is not a good
predictor of the flight performance. Another example
is the first time we took our avionics software from the
Ground Integration Unit (GIU), which is our ground
testbed, to the flight system, the boot process started,
then almost immediately the avionics computer
rebooted. This cycle repeated over and over until power
was removed from the system. It turns out that the
timing of the commercial hardware was different
enough from the flight hardware that on the flight
system, when the SpaceWire card was initialized, it
immediately began sending out interrupts before the
interrupt handler had been initialized. This had never
been a problem on the GIU. The solution was to
initialize the interrupt handler before initializing the
SpaceWire card.

II.V Prioritize Your Requirements – They Are Not All
Created Equal

Due to a compressed development schedule, the
software team prioritized requirements to ensure that the
capabilities absolutely required to operate the testbed
were implemented first. This way, if unforeseen
problems impacted the schedule, the payload could still
be shipped in time for launch. Since this is a
“reconfigurable” testbed, the ability to upload new
software is mandatory. The payload also has safety-
critical software to inhibit radiation when it presents a
hazard (during Extra-Vehicular Activity or docking
operations by visiting vehicles, as two examples), and
these inhibits must be verified in order to fly on ISS.
Finally, the interface to ISS is necessary in order to be
able to command the payload and to upload and
download files, including new software. These
requirements became Priority 1 (P1) requirements.
Other requirements necessary to meet the project’s

“Minimum Success” criteria, or which required the
actual flight hardware to verify were also categorized as
P1. Priority 2 (P2) requirements were those
requirements that were strongly tied to meeting the
remaining Mission Success criteria. P3 requirements
were those tied to experiment capabilities that could be
uploaded after launch without impacting payload
checkout.

This categorization proved invaluable when
negotiating requirements implementation within the
project. At launch time, all P1, several P2, and one P3
requirements were implemented. Several large
capabilities were not implemented, but are scheduled for
development post-ship and are currently under
development.

II.VI GIU: Proved to be invaluable as a tool to dry run
procedures, unit test software, and perform software
verifications: Saved valuable time on the critical path
of Flight System

As described above, the engineering unit radios were
installed into the GIU. The development and testing
conducted on the GIU was a heavily-scheduled, but
important, development tool before conducting the
integration and testing of the flight system. Operation
on the flight system required prior verification on the
GIU with the engineering units and an approved
procedure, so considerable time was spent using the
GIU to prepare for flight system operation. The
contention for the use of this hardware required the
different project organizations, e.g. Comm, Software,
Operations, to schedule shifts of time on the GIU from 6
am to midnight on some days. The breadboards were
also used for development, but they lacked the fidelity
of the GIU to go directly to flight unit operation.

Software verification was also conducted on the
GIU. While the key software tests were conducted on
the flight system, an exercise was done to identify
software verifications that could be conducted on the
GIU instead of the flight system with relatively low risk
of seeing differences between the two systems. This
allowed a parallel path to complete software
verifications, but testing had to be carefully considered
so verifications done on the GIU were valid as flight
demonstrations.

III. SOFTWARE LESSONS LEARNED

The following lessons apply specifically to software
development.

III.I DRIVE YOUR OWN INTERFACES: If you don’t
drive your interfaces, they will be driven for you

The software defined radio vendors reused and
modified as much software as possible from previous
efforts. Therefore, many of the interfaces and command
dictionaries were already in place. This required the

63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 4 of 7

avionics development to generate three different
command processors. Similarly, each radio had its own
set of telemetry with little commonality among them.
This reduced development time in the radios, but
increased time and complexity in the avionics
development.

Each radio has two separate interfaces – one used
for commanding and telemetry and one used for data
transfer.

Command and Telemetry Interface
Each SDR has a separate command format. The
Harris SDR uses RMAP (remote memory access
protocol) command format over SpaceWire with
data in 251-byte packets over SpaceWire. The JPL
SDR uses a character command format over 1553
with data in 260-byte packets over SpaceWire. The
GD SDR uses a fixed binary command format over
1553 with data in 256-byte packets over SpaceWire.

The GD SDR utilizes a fixed binary telemetry
packet that is pushed out over 1553 bus at 1 Hz.
Avionics must read this data before it is refreshed or
it is lost. Harris uses a telemetry packet that is filled
by reading the selected parameters from a
configuration file and is returned in response to a
query by avionics. The SDR JPL has a “heartbeat”
telemetry packet that is filled with values of
parameters identified in a configuration file, and
written to the 1553 registers at 1 Hz. Additional
telemetry for the JPL radio can be queried using a
string command with parameters indicating the
values to be returned. This data is displayed in a
serial interface display.

All formats were selected based upon heritage
developments. The JPL team focused on flexibility
at the expense of a high level of overhead. The GD
team created a very fixed format which was efficient
but inflexible to changes. Harris selected an
approach that was in-between with a fixed amount
of space in packet, but with the ability to modify
contents.

Data Interface
SpaceWire was selected as the data interface based
on recommendations from radio partners for a solid,
high-performance space data application. This
hardware and software technology was new to the
avionics development team.

The data interface had to be independently
developed for each radio. The data is sent in a
framed format, with a synchronization marker and
transfer frame primary header (TFPH) to lead a
fixed block of data. In addition, the SpaceWire

protocol has a SpaceWire header. The Harris SDR
adds and removes the synchronous marker and the
SpaceWire header, leaving the avionics to simply
grab the data sent through without any headers. The
GD SDR adds and removes the TFPH but not
synchronization marker. Avionics is required to add
and remove the synchronization marker for data
transfer. The JPL SDR data interface did not change
the sync marker or the TFPH. Avionics was
required to add and remove both of these for JPL
data transfer.

Ground Displays
Each radio had distinct requirements for display of
its telemetry resulting in different layouts and
number of screens on the ground workstations. The
GD telemetry stream contained both OE (operating
environment) and waveform data together. Harris
required multiple screens for just its waveform data.
Ground displays could not be reused between radios
and thus we had 30 or more displays to generate and
maintain.

Some data is displayed periodically (1 Hz telemetry)
whenever the payload or radio is on. There is also
the need to display graphs and plots of real time data
over time. One radio requires a screen to display
character commands and command responses being
transferred over the serial interface to the radio.

A theme that was common throughout our

development was – Do you pay up front to have
commonality, or do you cut costs to vendors and incur
more cost for payload development? In our case, since
the payload was a new development and the radios were
mostly redesigns of existing models, the payload
development took the hit to meet the radio interfaces.

III.II COMM SYSTEMS ENGINEER: To help flow
requirements down to subsystems

The ability to take system level requirements and
flow them down to each subsystem is a key aspect in
designing and verifying the system. It is also imperative
to define the interfaces between each subsystem, as well
the external interfaces.

One of the key tools used to extract the lower level
requirements and define the interfaces is a data flow
diagram. A data flow diagram is a graphical
representation of the flow of data, and shows what kinds
of information will be input to and output from the
system, where the data will come from and go to, and
where the data will be stored. For the SCaN Testbed, the
diagram shows the data flow originating on the ground,
flowing up to the flight system, then back down to the
ground again.

63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 5 of 7

In particular, the data flow passing through the
payload needed to be developed in detail. The data size
and headers change as the data passes through the
various segments of the flight and ground system, which
is different for each radio and impacts the processing
required. Example questions the team asked to develop
the diagram included: “What does 100 Mbps data rate
mean from radio to ground?” “What is the data flow
from each radio to the avionics?” Another factor
examined was the impact of using forward error
correction coding schemes, which effectively doubled
the data rate for the standard ½ rate coding scheme
used. These diagrams were essential to understand the
format and the data rate, and many diagrams were
developed to share this insight between the
communications and the software team, each of which
had a different perspective on the data definitions.

Another complex issue for resolution was allocating
time synchronization from higher level requirements
down to each of the lower level subsystems. Time
synchronization is a key feature required so that the
SCaN Testbed is on the same time reference as the ISS
and the TDRSS. The flight system has the potential of
several different sources (ISS, TDRSS, GPS) to obtain
the timing, and each source requires a different method
of transferring this data to the payload. Also, the
avionics and each SDR need to be synchronized. This
is to ensure that all the commands, telemetry, and data
are on the same time reference so these parameters can
be correlated and stored data can be understood. This
sounds like a simple task, but was not simple to
implement. The reason for this is that the avionics and
each radio had a different time oscillator with a different
accuracy. Also, the choice of the master clock used to
keep the master synchronization could change
depending on the accuracy required. Measuring the
accuracy itself was problematic, since your
measurement system needs to have a higher precision
than what you are measuring, and we were measuring
the most precise portion of our system. We didn’t have
a convenient way of measuring this and are still
working on this post-ship.

One lesson learned was with the external ground
support test equipment used to verify the operation of
the system. A large amount of data was generated that
needed to be evaluated post-test, and the project needed
to be convinced that the effort to synchronize all the
external equipment was necessary and the impact to the
critical path schedule was essential. Another lesson
learned was that the time keeping software of all
systems needed to be understood and carefully
monitored. During the thermal vacuum test, one of the
critical ground support computers switched to European
daylight savings time. The reason for this change was
unknown, but the impact of this unexpected change was
large in correlating all the collected data.

III.III Allow Additional Tine and Money When
Integrating Hardware From Different Vendors

Our avionics computer is custom-built with cards
from various vendors. Some cards were sold to us by
Vendor A, but portions of the card or drivers were
developed by Vendor B. When problems arose with the
hardware and software integration, it was extremely
difficult to pinpoint what component was causing the
problem. Each of the vendors believed that their
product was accurate and the adjoining part was at fault.
This caused extreme schedule delays through attempts
to communicate with all possible vendors, finding ways
to recreate the problem for them in order to get their
help, then working with them for a solution once we got
their attention. The vendors were willing to assist us and
were invested in our success. However, our software
engineers bore the burden of much unplanned time
tracking down hardware issues and isolating the cause,
with the vendors’ support. In some instances, our
development time was TRIPLE what we had planned.
This time should be anticipated and planned for when
integrating systems with hardware from different
vendors.

One of our internal interfaces proved particularly
problematic. This was the interface between the
SpaceWire card and the main processor in the computer,
which relied on communications over the PCI bus.
Each vendor had interpreted the PCI bus specification in
a slightly different way with respect to polling of direct
memory access (DMA). This difference of
interpretation presented itself in our system as a
deadlock condition over bus usage when attempting to
transfer high data rates between avionics and the radios.
The payload would grind to a halt and our only option
was to reboot the entire system. In this case it was
difficult to identify which vendor was “right” since we
were dealing with a specification that was, perhaps, not
as specific as it needed to be. The deciding factor was
which component cost us less schedule time to fix. One
component required that we send a computer card back
to the vendor to have them replace a field-
programmable gate array (FPGA). The other
component could be reprogrammed at our site, which
was far less impact to our schedule.

In the end, we did have to replace the firmware on a
card that provided our communications over MIL-STD-
1553 and our digital input/output functions. We
originally purchased components to develop two flight
computers and two development computers. Nine
months later we decided to add two more development
systems to support our development schedule and
twelve software developers and we purchased additional
components. In putting together our additional
development systems, we could not get the 1553 boards
to boot in the new systems. It turns out that these newer

63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 6 of 7

boards were a complete redesign of the original boards,
although they had the same model number. We could
not use these new boards without compiling new drivers
and maintaining two separate software loads, so we
chose to make do with just our older boards. With
about six months to go before shipping our payload, we
discovered that the older boards were the culprit for
spurious digital input/output signal changes that were
NOT initiated through software. This affected our
safety-critical ability to make sure or payload was not
radiating (transmitting) during certain times where the
radiation could harm people or equipment. It seems we
had discovered the reason for the sudden redesign of
these boards. We sent all of our older boards back to
the vendor to replace the firmware and upgrade them to
the newer design. New software drivers had to be
written and integrated into the code base. During the
transition, software testing required switching between
the old and new code base, depending on what type of
hardware was in the system under test. In order to keep
testing going, the cards were sent back incrementally so
only one system was down at a time.

III.IV NEW TECHNOLOGY: When adopting new
technologies (SpaceWire) have a direct line to the
experts around the world

We had a technical scenario that had never been
done before as far as we knew - three SpaceWire
interfaces controlled by a single computer with four
different SpaceWire implementations. With the
problems described in paragraph III.III, our software
development took about four times what we had
estimated.

Repairs were done in parallel with other testing that
didn’t require SpaceWire data transfer to minimize loss
of schedule. The radios had a self-test functionality that
would generate data to transmit and calculate bit error
rate on data being received, which was used instead of
flowing data through avionics while we struggled to
solve the SpaceWire issues. We pulled in experts from
Goddard Space Flight Center and followed their best
practices for other spacecraft.

GRC put together a Tiger Team of NASA and
vendor consultants to solve the SpaceWire problems.
The team first looked at software-only solutions; but
after further investigation and determination of critical
root cause(s), worked with the vendor to change
firmware. The software team rewrote the drivers to

adapt to the changes. The entire avionics unit was
pulled to access firmware and new environmental
testing had to be completed. Analysis showed FPGA
change did not impact system Electro-Magnetic
Interference results. Throughout the year of SpaceWire
issues, functional and environmental testing was
conducted with incremental SpaceWire performance
capabilities

Take-away:

SpaceWire performance is great, but buyers beware.
SpaceWire hardware is not robust and
firmware/software interface standards are not mature.
Utilize FPGAs that are reliably reprogrammable
without removal from system.

V. CONCLUSION

The development of any complex system requires a
well-constructed plan to be successful. Spaceflight
systems have been developed to extensive standards and
practices to insure mission critical systems such as
radios and control avionics operate as expected once
launched. The introduction of reconfigurable SDRs
requires an adjustment of these practices to account for
the flexibility that the systems offer, but still provide
confidence in proper operation.

The lessons learned from this development should
be applicable to future spaceflight systems with
reconfigurable components.

.

VI. ACRONYMS

Direct Memory Access (DMA)
Field-Programmable Gate Array (FPGA)
General Dynamics Corporation (GD)
Glenn Research Center (GRC)
Global Positioning System (GPS)

63rd International Astronautical Congress, Naples, Italy. Copyright ©2012 by the National Aeronautics and Space Administration. All rights reserved.

IAC-12- B2.2.5 Page 7 of 7

Goddard Space Flight Center (GFSC)
Ground Integration Unit (GIU)
International Space Station (ISS)
Jet Propulsion Laboratory (JPL)
National Aeronautics and Space Administration (NASA)
Operating Environment (OE)
Radio Frequency (RF)
Software Defined Radio (SDR)
Space Communications and Navigation (SCaN)
Tracking and Data Relay Satellite System (TDRSS)
Transfer Frame Primary Header (TFPH)

VII. REFERENCES
Reinhart, R., Kacpura, T., Handler, L., Hall, C., Mortensen, D., Johnson, S., et. al. “Space Telecommunications Radio System

(STRS) Architecture Standard, Release 1.02.1. NASA/TM-2010-216809, NASA Glenn Research Center, Cleveland OH,
December 2010.

1 SCaN Testbed Communications System Lead, AIAA Non-member
2SCaN Testbed Lead Software Engineer, AIAA Non-member

